Runcinated 24-cells
In four-dimensional geometry, a runcinated 24-cell is a convex uniform 4-polytope, being a runcination of the regular 24-cell.
There are 3 unique degrees of runcinations of the 24-cell including with permutations truncations and cantellations.
Runcinated 24-cell
In geometry, the runcinated 24-cell or small prismatotetracontoctachoron is a uniform 4-polytope bounded by 48 octahedra and 192 triangular prisms. The octahedral cells correspond with the cells of a 24-cell and its dual.E. L. Elte identified it in 1912 as a semiregular polytope.
Alternate names
- Runcinated 24-cell
- Runcinated icositetrachoron
- Runcinated polyoctahedron
- Small prismatotetracontoctachoron
Coordinates
The permutations of the second set of coordinates coincide with the vertices of an inscribed cantellated tesseract.
Projections
Related regular skew polyhedron
The regular skew polyhedron,, exists in 4-space with 8 square around each vertex, in a zig-zagging nonplanar vertex figure. These square faces can be seen on the runcinated 24-cell, using all 576 edges and 288 vertices. The 384 triangular faces of the runcinated 24-cell can be seen as removed. The dual regular skew polyhedron,, is similarly related to the octagonal faces of the bitruncated 24-cell.Runcitruncated 24-cell
The runcitruncated 24-cell or prismatorhombated icositetrachoron is a uniform 4-polytope derived from the 24-cell. It is bounded by 24 truncated octahedra, corresponding with the cells of a 24-cell, 24 rhombicuboctahedra, corresponding with the cells of the dual 24-cell, 96 triangular prisms, and 96 hexagonal prisms.Coordinates
The Cartesian coordinates of an origin-centered runcitruncated 24-cell having edge length 2 are given by all permutations of coordinates and sign of:The permutations of the second set of coordinates give the vertices of an inscribed omnitruncated tesseract.
The dual configuration has coordinates generated from all permutations and signs of:
Projections
Schlegel diagram centered on rhombicuboctahedron only triangular prisms shown |
Runcicantic snub 24-cell
A half-symmetry construction of the runcitruncated 24-cell, as, also called a runcicantic snub 24-cell, as, has an identical geometry, but its triangular faces are further subdivided. Like the snub 24-cell, it has symmetry , order 576. The runcitruncated 24-cell has 192 identical hexagonal faces, while the runcicantic snub 24-cell has 2 constructive sets of 96 hexagons.The difference can be seen in the vertex figures:
Runcic snub 24-cell
A related 4-polytope is the runcic snub 24-cell or prismatorhombisnub icositetrachoron, s3,. It is not uniform, but it is vertex-transitive and has all regular polygon faces. It is constructed with 24 icosahedra, 24 truncated tetrahedra, 96 triangular prisms, and 96 triangular cupolae in the gaps, for a total of 240 cells, 960 faces, 1008 edges, and 288 vertices. Like the snub 24-cell, it has symmetry , order 576.The vertex figure contains one icosahedron, two triangular prisms, one truncated tetrahedron, and 3 triangular cupolae.
Omnitruncated 24-cell
The omnitruncated 24-cell or great prismatotetracontoctachoron is a uniform 4-polytope derived from the 24-cell. It is composed of 1152 vertices, 2304 edges, and 1392 faces. It has 240 cells: 48 truncated cuboctahedra, 192 hexagonal prisms. Each vertex contains four cells in a phyllic disphenoidal vertex figure: two hexagonal prisms, and two truncated cuboctahedra.Structure
The 48 truncated cuboctahedral cells are joined to each other via their octagonal faces. They can be grouped into two groups of 24 each, corresponding with the cells of a 24-cell and its dual. The gaps between them are filled in by a network of 192 hexagonal prisms, joined to each other via alternating square faces in alternating orientation, and to the truncated cuboctahedra via their hexagonal faces and remaining square faces.Coordinates
The Cartesian coordinates of an omnitruncated 24-cell having edge length 2 are all permutations of coordinates and sign of:Images
Omnitruncated 24-cell | Dual to omnitruncated 24-cell |
Related polytopes
Nonuniform variants with symmetry and two types of truncated cuboctahedra can be doubled by placing the two types of truncated cuboctahedra on each other to produce a nonuniform polychoron with 48 truncated cuboctahedra, 144 octagonal prisms, 192 hexagonal prisms, two kinds of 864 rectangular trapezoprisms, and 2304 vertices. Its vertex figure is an irregular triangular bipyramid.Vertex figure
This polychoron can then be alternated to produce another nonuniform polychoron with 48 snub cubes, 144 square antiprisms, 192 octahedra, three kinds of 2016 tetrahedra, and 1152 vertices. It has a symmetry of 3,4,3]+], order 1152.
Vertex figure
Full snub 24-cell
The uniform snub 24-cell is called a semi-snub 24-cell by John Horton Conway with Coxeter diagram within the F4 family, although it is a full snub or omnisnub within the D4 family, as.In contrast a full snub 24-cell or omnisnub 24-cell, defined as an alternation of the omnitruncated 24-cell, cannot be made uniform, but it can be given Coxeter diagram, and symmetry